Programming language:

A programming language is an artificial language designed to express computations that can be performed by a machine, particularly a computer. Programming languages can be used to create programs that control the behavior of a machine, to express algorithms precisely, or as a mode of human communication.

Many programming languages have some form of written specification of their syntax (form) and semantics (meaning). Some languages are defined by a specification document. For example, the C programming language is specified by an ISO Standard. Other languages, such as Perl, have a dominant implementation that is used as a reference.

The earliest programming languages predate the invention of the computer, and were used to direct the behavior of machines such as Jacquard looms and player pianos. Thousands of different programming languages have been created, mainly in the computer field, with many more being created every year. Most programming languages describe computation in an imperative style, i.e., as a sequence of commands, although some languages, such as those that support functional programming or 

programming" 
logic programming
, use alternative forms of description.
Definitions
A programming language is a notation for writing 

program" 
programs
, which are specifications of a computation or algorithm.[1] Some, but not all, authors restrict the term "programming language" to those languages that can express all possible algorithms.[1]

 HYPERLINK "http://en.wikipedia.org/wiki/Programming_language" \l "cite_note-1" [2] Traits often considered important for what constitutes a programming language include:

Function and target: A computer programming language is a language[3] used to write computer programs, which involve a computer performing some kind of computation[4] or algorithm and possibly control external devices such as printers, disk drives, robots,[5] and so on. For example PostScript programs are frequently created by another program to control a computer printer or display. More generally, a programming language may describe computation on some, possibly abstract, machine. It is generally accepted that a complete specification for a programming language includes a description, possibly idealized, of a machine or processor for that language.[6] In most practical contexts, a programming language involves a computer; consequently programming languages are usually defined and studied this way.[7] Programming languages differ from 
· 
language" 
natural languages
 in that natural languages are only used for interaction between people, while programming languages also allow humans to communicate instructions to machines.

· Abstractions: Programming languages usually contain abstractions for defining and manipulating data structures or controlling the flow of execution. The practical necessity that a programming language support adequate abstractions is expressed by the abstraction principle;[8] this principle is sometimes formulated as recommendation to the programmer to make proper use of such abstractions.[9]
Expressive power: The 

of computation" 
theory of computation
 classifies languages by the computations they are capable of expressing. All 
· 
completeness" 
Turing complete
 languages can implement the same set of algorithms. ANSI/ISO SQL and Charity are examples of languages that are not Turing complete, yet often called programming languages.[10]

 HYPERLINK "http://en.wikipedia.org/wiki/Programming_language" \l "cite_note-10" [11]


 languages" 
Markup languages
 like XML, HTML or troff, which define structured data, are not generally considered programming languages.[12]

 HYPERLINK "http://en.wikipedia.org/wiki/Programming_language" \l "cite_note-12" [13]

 HYPERLINK "http://en.wikipedia.org/wiki/Programming_language" \l "cite_note-13" [14] Programming languages may, however, share the syntax with markup languages if a computational semantics is defined. XSLT, for example, is a Turing complete XML dialect.[15]

 HYPERLINK "http://en.wikipedia.org/wiki/Programming_language" \l "cite_note-15" [16]

 HYPERLINK "http://en.wikipedia.org/wiki/Programming_language" \l "cite_note-16" [17] Moreover, LaTeX, which is mostly used for structuring documents, also contains a Turing complete subset.[18]

 HYPERLINK "http://en.wikipedia.org/wiki/Programming_language" \l "cite_note-18" [19]
The term computer language is sometimes used interchangeably with programming language.[20] However, the usage of both terms varies among authors, including the exact scope of each. One usage describes programming languages as a subset of computer languages.[21] In this vein, languages used in computing that have a different goal than expressing computer programs are generically designated computer languages. For instance, markup languages are sometimes referred to as computer languages to emphasize that they are not meant to be used for programming.[22] Another usage regards programming languages as theoretical constructs for programming abstract machines, and computer languages as the subset thereof that runs on physical computers, which have finite hardware resources.[23] 

Reynolds" 
John C. Reynolds
 emphasizes that 

specification" 
formal specification
 languages are just as much programming languages as are the languages intended for execution. He also argues that textual and even graphical input formats that affect the behavior of a computer are programming languages, despite the fact they are commonly not Turing-complete, and remarks that ignorance of programming language concepts is the reason for many flaws in input formats.

Programming language

A "programming language" is a language designed to describe a set of consecutive actions to be executed by a computer. A programming language is therefore a practical way for us (humans) to give instructions to a computer. 

On the other hand, the term "natural language" defines a means of communication shared by a group of individuals (for example: English or French) 

Languages that computers use to communicate with each other, have nothing to do with programming languages, they are referred to as communication protocols, these are two very different concepts. A programming language is very strict:

EACH instruction corresponds to ONE 

processor action.

The language used by the processor is called machine code. The code that reaches the processor consists of a series of 0s and 1s known as (binary data). 

Machine code is therefore difficult for humans to understand, which is why intermediary languages, which can be understood by humans, have been developed. The code written in this type of language is transformed into machine code so that the processor can process it. 

The assembler was the first programming language ever used. This is very similar to machine code but can be understood by developers. Nonetheless, such a language is so similar to machine code that it strictly depends on the type of processor used (each processor type may have its own machine code). Thus a program developed for one machine may not be ported to another type of machine. The term "portability" describes the ability to use a software program on different types of machines. A software program written in assembler code, may sometimes have to be completely rewritten to work on another type of computer! 

A programming language has therefore several advantages:

· it is much more understandable than machine code;

· it allows greater portability, i.e. can be easily adapted to run on different types of computers.

Imperative and functional programming languages

Programming languages are generally divided into two major groups according to how their commands are processed:

· imperative languages;

· functional languages.

Imperative programming language

An imperative language programs using a series of commands, grouped into blocks and comprising of conditional statements which allow the program to return to a block of commands if the condition is met. These were the first programming languages in use, even today many modern languages still use this principle. 

Structured imperative languages suffer, however, from lack of flexibility due to the sequentiality of instructions. 

Functional programming language

A functional programming language (often called procedural language) is a language which creates programs using functions, returning to a new output state and receiving as input the result of other functions. When a function invokes itself, we refer to this as recursion.

Interpretation and compilation

Programming languages may be roughly divided into two categories:

· interpreted languages
· compiled languages
Interpreted language

A programming language is by definition different to machine code This must therefore be translated so that the processor can understand the code. A program written in an interpreted language requires an extra program (the interpreter) which translates the programs commands as needed. 

Compiled language

A program written in a "compiled" language is translated by an additional program called a compiler which in turn creates a new stand-alone file which does not require any other program to execute itself, such a file is called an executable. 

A program written in a compiled language has the advantage of not requiring an additional program to run it once it has been compiled. Furthermore, as the translation only needs to be done once, at compilation it executes much faster. 
However, it is not as flexible as a program written in an interpreted language, as each modification of the source file (the file understandable by humans: the file to be compiled) means that the program must be recompiled for the changes to take effect. 

On the other hand, a compiled program has the advantage of guaranteeing the security of the source code. In effect, interpreted language, being a directly legible language, means that anyone can find out the secrets of a program and thus copy or even modified the program. There is therefore a risk of copyright violation. On the other hand, certain secure applications need code confidentiality to avoid illegal copying (bank transactions, on-line payments, secure communications...). 

Intermediary languages

Some languages belong to both categories (LISP, Java, Python...) as the program written in these languages may in certain cases undergo an intermediary compilation phase, into a file written in a language different to the source file and non-executable (requiring an interpreter). Java applets, small programs, often loaded in web pages, are compiled files, which can only be executed from within a web browser (these are files with the .class extension). 

Some examples of widely used languages

Here is a non-exhaustive list of current programming languages: 

	Language
	Main application area
	Compiled/interpreted

	ADA
	Real-time
	Compiled language

	BASIC
	Programming for educational purposes
	Interpreted language

	C
	System programming
	Compiled language

	C++
	System object programming
	Compiled language

	Cobol
	Management
	Compiled language

	Fortran
	Calculation
	Compiled language

	Java
	Internet oriented programming
	Intermediary language

	MATLAB
	Mathematical calculations
	Interpreted language

	Mathematica
	Mathematical calculations
	Interpreted language

	LISP
	Artificial intelligence
	Intermediary language

	Pascal
	Education
	Compiled language

	PHP
	Dynamic website development
	Interpreted language

	Prolog
	Artificial intelligence
	Interpreted language

	Perl
	Processing character strings
	Interpreted language


