Data Types in C Language:

A programming language is proposed to help programmer to process certain kinds of data and to provide useful output. The task of data processing is accomplished by executing series of commands called program. A program usually contains different types of data types (integer, float, character etc.) and need to store the values being used in the program. C language is rich of data types. A C programmer has to employ proper data type as per his requirement.

C has different data types for different types of data and can be broadly classified as :

1. Primary data types

2. Secondary data types

Primary data types consist following data types.
Data Types in C

Integer types:

Integers are whole numbers with a range of values, range of values are machine dependent. Generally an integer occupies 2 bytes memory space and its value range limited to -32768 to +32767 (that is, -215 to +215-1). A signed integer use one bit for storing sign and rest 15 bits for number.
To control the range of numbers and storage space, C has three classes of integer storage namely short int, int and long int. All three data types have signed and unsigned forms. A short int requires half the amount of storage than normal integer. Unlike signed integer, unsigned integers are always positive and use all the bits for the magnitude of the number. Therefore the range of an unsigned integer will be from 0 to 65535. The long integers are used to declare a longer range of values and it occupies 4 bytes of storage space.

Syntax: int <variable name>; like
int num1;
short int num2;
long int num3;

Example: 5, 6, 100, 2500.

Integer Data Type Memory Allocation

[image: image1.jpg][shortit T st] Tongint]

1Byte 2Bytes 4Bytes

Floating Point Types:

The float data type is used to store fractional numbers (real numbers) with 6 digits of precision. Floating point numbers are denoted by the keyword float. When the accuracy of the floating point number is insufficient, we can use the double to define the number. The double is same as float but with longer precision and takes double space (8 bytes) than float. To extend the precision further we can use long double which occupies 10 bytes of memory space.

Syntax: float <variable name>; like
float num1;
double num2;
long double num3;

Example: 9.125, 3.1254.

Floating Point Data Type Memory Allocation

[image: image2.jpg]ong double

4Bytes 8Bytes 10 Bytes

Character Type:

Character type variable can hold a single character. As there are singed and unsigned int (either short or long), in the same way there are signed and unsigned chars; both occupy 1 byte each, but having different ranges. Unsigned characters have values between 0 and 255, signed characters have values from –128 to 127.

Syntax: char <variable name>; like
char ch = ‘a’;

Example: a, b, g, S, j.

Void Type:

The void type has no values therefore we cannot declare it as variable as we did in case of integer and float.

The void data type is usually used with function to specify its type. Like in our first C program we declared “main()” as void type because it does not return any value. The concept of returning values will be discussed in detail in the C function hub.

Secondary Data Types

Array in C programming :

What is an Array?

An array in C language is a collection of similar data-type, means an array can hold value of a particular data type for which it has been declared. Arrays can be created from any of the C data-types int, float, and char. So an integer array can only hold integer values and cannot hold values other than integer. When we declare array, it allocates contiguous memory location for storing values whereas 2 or 3 variables of same data-type can have random locations. So this is the most important difference between a variable and an array.

Types of Arrays:
1. One dimension array (Also known as 1-D array).

2. Two dimension array (Also known as 2-D array).
3. Multi-dimension array.
Declaration of One Dimensional Arrays:

We can initialize and assign values to the arrays in the same way as we do with variable. We can assign value to an array at the time of declaration or during runtime. Let’s look at each approach.
Syntax: data_type array_name[width];

Example: int roll[8];

In our example, int specifies the type if the variable, roll specifies the name of the variable and the value in bracket [8] is new for newbie. The bracket ([]) tells compiler that it is an array and number mention in the bracket specifies that how many elements (values in any array is called elements) it can store. This number is called dimension of array.
So, with respect to our example we have declared an array of integer type and named it “roll” which can store roll numbers of 8 students. You can see memory arrangement of above declared array in the following image:

[image: image3.jpg]Name rolf0] rolff] o2l rolf3] rolf4] rolfS] roll§] rolf7]

Values 12 45 32 23 17 49 5 1"

Address 1000 1002 1004 1008 1008 1010 1012 1014

1-D Array memory arrangement

One Dimensional Array Memory Arrangement.

Array Initialization Example

view plain
1. #include<stdio.h>

2. #include<conio.h>

3.

4. void main()

5. {

6. int arr[5],i;

7. clrscr();

8. arr[0]=10;

9. arr[1]=20;

10. arr[2]=30;

11. arr[3]=40;

12. arr[4]=50;

13.

14. printf("Value in array arr[0] : %d\n",arr[0]);

15. printf("Value in array arr[1] : %d\n",arr[1]);

16. printf("Value in array arr[2] : %d\n",arr[2]);

17. printf("Value in array arr[3] : %d\n",arr[3]);

18. printf("Value in array arr[4] : %d\n",arr[4]);

19. printf("\n");

20.

21. for(i=0;i<5;i++)

22. {

23. printf("Value in array arr[%d] : %d\n",i,arr[i]);

24. }

25. getch();

26. }

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[5],i;

clrscr();

arr[0]=10;

arr[1]=20;

arr[2]=30;

arr[3]=40;

arr[4]=50;

printf("Value in array arr[0] : %d\n",arr[0]);

printf("Value in array arr[1] : %d\n",arr[1]);

printf("Value in array arr[2] : %d\n",arr[2]);

printf("Value in array arr[3] : %d\n",arr[3]);

printf("Value in array arr[4] : %d\n",arr[4]);

printf("\n");

for(i=0;i<5;i++)

{

printf("Value in array arr[%d] : %d\n",i,arr[i]);

}

getch();

}

In the above c arrays example we have assigned the value of integer array individually like we do with an integer variable. We have called array element’s value individually and using for loop so that it would be clear for beginner and semi-beginner C programmers. So, from the above example it is evident that we can assign values to an array element individually and can call them individually whenever we need them.

Declaration of 2D array:

In C language it is possible to have more than one dimension in an array. In this tutorial we are going to learn how we can use two dimensional arrays (2D arrays) to store values. Because it is a 2D array so its structure will be different from one dimension array. The 2D array is also known as Matrix or Table, it is an array of array. See the below image, here each row is an array.
Syntax: data_type array_name[row_size][column_size];
Example: int arr[3][3];
So the above example declares a 2D array of integer type. This integer array has been named arr and it can hold up to 9 elements (3 rows x 3 columns).

2D Array

[image: image4.jpg]am col[o] colf1] col [2]

2

5

79

8

rowpo] [_10
rowpt] [&
rowp2] [

s

3

2D Array Arrangement

Memory Map of 2D Array

[image: image5.jpg]anfO[0] amOl1) amOf2l an{10] aritt] amit)2) am2fo) amz[1] ai2i2)

12 [45 [63 | 89 | 34 73 [19 [76 [49

1000 1002 1004 1006 1008 1010 1012 1014 1016

Memory Map of 2 Dimentional Array

Code for assigning & displaying 2D Array

view plain
1. #include<stdio.h>

2. #include<conio.h>

3.

4. void main()

5. {

6. int i, j;

7. int arr[3][3]={

8. {12, 45, 63},

9. {89, 34, 73},

10. {19, 76, 49}

11. };

12. clrscr();

13. printf(":::2D Array Elements:::\n\n");

14. for(i=0;i<3;i++)

15. {

16. for(j=0;j<3;j++)

17. {

18. printf("%d\t",arr[i][j]);

19. }

20. printf("\n");

21. }

22. getch();

23. }

#include<stdio.h>

#include<conio.h>

void main()

{

int i, j;

int arr[3][3]={

{12, 45, 63},

{89, 34, 73},

{19, 76, 49}

};

clrscr();

printf(":::2D Array Elements:::\n\n");

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

printf("%d\t",arr[i][j]);

}

printf("\n");

}

getch();

}

So in the above example we have declared a 2D array named arr which can hold 3x3 elements. We have also initialized that array with values, because we told the compiler that this array will contain 3 rows (0 to 2) so we divided elements accordingly. Elements for column have been differentiated by a comma (,). When compiler finds comma in array elements then it assumes comma as beginning of next element value. We can also define the same array in other ways, like.
int arr[3][3]={12, 45, 63, 89, 34, 73, 19, 76, 49}; or,
int arr[][3]={12, 45, 63, 89, 34, 73, 19, 76, 49};

But this kind of declaration is not acceptable in C language programming.

int arr[2][]={12, 45, 63, 89, 34, 73, 19, 76, 49}; or,
int arr[][]={12, 45, 63, 89, 34, 73, 19, 76, 49};

To display 2D array elements we have to just point out which element value we want to display. In our example we have a arr[3][3], so the array element reference will be from arr[0][0] to arr[2][2]. We can print display any element from this range. But in our example I have used for loop for my convenience, otherwise I had to write 9 printf statements to display all elements of array. So for loop i handles row of 2D array and for loop j handles column. I have formatted the output display of array so that we can see the elements in tabular form.

Multidimensional Array:

C allows array of two or more dimensions and maximum numbers of dimension a C program can have is depend on the compiler we are using. Generally, an array having one dimension is called 1D array, array having two dimensions called 2D array and so on. So in C programming an array can have two or three or four or even ten or more dimensions. More dimensions in an array means more data it can hold and of course more difficulties to manage and understand these arrays. A multidimensional array has following syntax:

Syntax:
type array_name[d1][d2][d3][d4]………[dn];
Where dn is the size of last dimension.

Example:
int table[5][5][20];
float arr[5][6][5][6][5];
In our example array “table” is a 3D (A 3D array is an array of arrays of arrays.) array which can hold 500 integer type elements. And array “arr” is a 5D array which can hold 4500 floating-point elements. Can see the power of array over variable? When it comes to hold multiple values in a C programming, we need to declare several variables (for example to store 150 integers) but in case of array, a single array can hold thousands of values (depending on compiler, array type etc).

How to Declaration and Initialization 3D Array

Before we move to serious programming let's have a look of 3D array. A 3D array can be assumed as an array of arrays of arrays, it is array (collection) of 2D arrays and as you know 2D array itself is array of 1D array. It sounds a bit confusing but don't worry as you will lead your learning on multidimensional array, you will grasp all logic and concept. A diagram can help you to understand this.

3D Array Conceptual View

[image: image6.jpg]

3D array memory map.

We can initialize a 3D array at the compile time as we initialize any other variable or array, by default an un-initialized 3D array contains garbage value. Let’s see a complete example on how we can work with a 3D array.

Example of Declaration and Initialization 3D Array

view plain
1. #include<stdio.h>

2. #include<conio.h>

3.

4. void main()

5. {

6. int i, j, k;

7. int arr[3][3][3]=

8. {

9. {

10. {11, 12, 13},

11. {14, 15, 16},

12. {17, 18, 19}

13. },

14. {

15. {21, 22, 23},

16. {24, 25, 26},

17. {27, 28, 29}

18. },

19. {

20. {31, 32, 33},

21. {34, 35, 36},

22. {37, 38, 39}

23. },

24. };

25. clrscr();

26. printf(":::3D Array Elements:::\n\n");

27. for(i=0;i<3;i++)

28. {

29. for(j=0;j<3;j++)

30. {

31. for(k=0;k<3;k++)

32. {

33. printf("%d\t",arr[i][j][k]);

34. }

35. printf("\n");

36. }

37. printf("\n");

38. }

39. getch();

40. }

#include<stdio.h>

#include<conio.h>

void main()

{

int i, j, k;

int arr[3][3][3]=

{

 {

{11, 12, 13},

{14, 15, 16},

{17, 18, 19}

 },

 {

{21, 22, 23},

{24, 25, 26},

{27, 28, 29}

},

{

{31, 32, 33},

{34, 35, 36},

{37, 38, 39}

},

};

clrscr();

printf(":::3D Array Elements:::\n\n");

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

for(k=0;k<3;k++)

{

printf("%d\t",arr[i][j][k]);

}

printf("\n");

}

printf("\n");

}

getch();

}

[image: image7.jpg]

So in the above example we have declared multidimensional array and named this integer array as “arr” which can hold 3x3x3 (27 integers) elements. We have also initialized multidimensional array with some integer values.

